Compare commits

..

No commits in common. "f77bf1d096bd1987dffff06b0a2f0145941de335" and "af32927f5bb71c044cdae290f433e001c922c1af" have entirely different histories.

188
main.py
View File

@ -9,91 +9,34 @@ from datetime import datetime
# 配置日志记录 # 配置日志记录
logging.basicConfig(filename='log.txt', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logging.basicConfig(filename='log.txt', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# 常量
P_LIMIT = 6 # 最大晋升次数 P_LIMIT = 6 # 最大晋升次数
P_START = 10 # 晋升记录开始行 P_START = 10 # 晋升记录开始行
H_START = 15 + P_LIMIT # 历史记录开始行 H_START = 15 + P_LIMIT # 历史记录开始行
NOWTIME = datetime.now() # 自定义日期解析函数
# 全局变量
## 通过函数读取
BaseData = pd.DataFrame()
Promote = pd.DataFrame()
Rule_Role = []
Rule_Level = []
Rule_RoleName = []
Level_Limit = pd.DataFrame()
Promote_Level = pd.DataFrame()
Promote_verify = pd.DataFrame()
## 统计量
max_promote = 0
max_history = 0
# 工具函数
def custom_date_parser(x): def custom_date_parser(x):
try: try:
return datetime.strptime(x, '%Y-%m-%d') return datetime.strptime(x, '%Y-%m-%d')
except: except:
return x return x
def format_time(dt,info):
try:
return dt.strftime("%Y.%m")
except:
logging.warning(f"[{info}]时间格式错误:{dt}")
return dt
def to_int(x):
try:
return int(x)
except:
return 0
def fallback(x):
for i in x:
if pd.notna(i) and i != '':
return i
return ''
def split_level(level:str):
try:
parts = level.split('-')
return (int(parts[0]), int(parts[1]))
except:
raise Exception(f"职级[{level}]格式错误")
# 读取信息
def read_base_data(): # 读取员工数据
global BaseData
BaseData = pd.read_excel("原数据.xlsx", sheet_name="入职信息") BaseData = pd.read_excel("原数据.xlsx", sheet_name="入职信息")
Promote = pd.read_excel("原数据.xlsx", sheet_name="职务变动") #
for index, row in BaseData.iterrows():
for col in ["出生年月","任职年月","原职时间","参加工作时间","入职时间", "晋档起始", "晋级起始", "日期2"]: for col in ["出生年月","任职年月","原职时间","参加工作时间","入职时间", "晋档起始", "晋级起始", "日期2"]:
BaseData[col] = BaseData[col].apply(custom_date_parser) BaseData.at[index, col] = custom_date_parser(row[col])
for col in ["晋档起始", "晋级起始"]:
BaseData[col] = BaseData[col].apply(lambda x: datetime(x.year, 1, 1) if isinstance(x, datetime) else x)
BaseData["Latest_Role"] = None
BaseData["Latest_Prom"] = None
BaseData["工龄调增"] = BaseData["工龄调增"].apply(to_int)
BaseData["工龄调减"] = BaseData["工龄调减"].apply(to_int)
BaseData["学龄"] = BaseData["学龄"].apply(to_int)
BaseData["工龄"] = BaseData.apply(lambda row: NOWTIME.year-row["参加工作时间"].year+row["工龄调增"]-row["工龄调减"]+1, axis=1)
def read_promote(): # 读取晋升记录 for index, row in Promote.iterrows():
global Promote
Promote = pd.read_excel("原数据.xlsx", sheet_name="职务变动")
for col in ["任职时间","工资执行时间"]: for col in ["任职时间","工资执行时间"]:
Promote[col] = Promote[col].apply(custom_date_parser) Promote.at[index, col] = custom_date_parser(row[col])
def read_rule_role(): # 读取职位规则 logging.info("人员信息加载完成")
global Rule_Role
Rule_Role = []
col = 4 col = 4
while True: while True: # 职位规则
try: try:
rule = pd.read_excel("原数据.xlsx", sheet_name="职位规则",usecols=f"{get_column_letter(col)}:{get_column_letter(col+1)}", header=None) rule = pd.read_excel("原数据.xlsx", sheet_name="职位规则",usecols=f"{get_column_letter(col)}:{get_column_letter(col+1)}", header=None)
Rule_Role.append({ Rule_Role.append({
@ -104,10 +47,7 @@ def read_rule_role(): # 读取职位规则
col += 2 col += 2
except: except:
break break
Rule_Role = sorted(Rule_Role, key=lambda x: x['start']) Rule_Level = []
def read_rule_level(): # 读取职级规则
global Rule_Level
col = 1 col = 1
while True: # 职级规则 while True: # 职级规则
try: try:
@ -120,10 +60,7 @@ def read_rule_level(): # 读取职级规则
col += 2 col += 2
except: except:
break break
Rule_Level = sorted(Rule_Level, key=lambda x: x['start']) Rule_RoleName = []
def read_rule_role_name(): # 读取名称变化规则
global Rule_RoleName
col = 1 col = 1
while True: # 名称变化 while True: # 名称变化
try: try:
@ -136,10 +73,8 @@ def read_rule_role_name(): # 读取名称变化规则
col += 2 col += 2
except: except:
break break
Rule_RoleName = sorted(Rule_RoleName, key=lambda x: x['start'])
def read_level_limit(): # 读取职位对应的级别限制 # 读取职位对应的级别限制
global Level_Limit, Promote_Level
Level_Limit_tmp = pd.read_excel("原数据.xlsx", sheet_name="职位规则", usecols="A:A", skiprows=2, names=["limit"]) Level_Limit_tmp = pd.read_excel("原数据.xlsx", sheet_name="职位规则", usecols="A:A", skiprows=2, names=["limit"])
Promote_Level_tmp = pd.read_excel("原数据.xlsx", sheet_name="职位规则", usecols="B:C", skiprows=2, names=["级别","档次"]) Promote_Level_tmp = pd.read_excel("原数据.xlsx", sheet_name="职位规则", usecols="B:C", skiprows=2, names=["级别","档次"])
Level_Limit = {} Level_Limit = {}
@ -149,24 +84,24 @@ def read_level_limit(): # 读取职位对应的级别限制
Level_Limit[row["role"]] = Level_Limit_tmp.iloc[index]["limit"] Level_Limit[row["role"]] = Level_Limit_tmp.iloc[index]["limit"]
Promote_Level[row["role"]] = (Promote_Level_tmp.iloc[index]["级别"], Promote_Level_tmp.iloc[index]["档次"]) Promote_Level[row["role"]] = (Promote_Level_tmp.iloc[index]["级别"], Promote_Level_tmp.iloc[index]["档次"])
def read_promote_verify(): # 读取晋升校验 # 晋升校验
global Promote_verify Promote_verify = Level_Limit_tmp = pd.read_excel("原数据.xlsx", sheet_name="晋升校验", usecols="A:B")
Promote_verify = pd.read_excel("原数据.xlsx", sheet_name="晋升校验", usecols="A:B")
def load_people():
read_base_data()
read_promote()
logging.info("人员信息加载完成")
def load_rule():
read_rule_role()
read_rule_level()
read_rule_role_name()
read_level_limit()
read_promote_verify()
logging.info("规则加载完成") logging.info("规则加载完成")
# 获取配置类函数 Rule_Role = sorted(Rule_Role, key=lambda x: x['start'])
Rule_Level = sorted(Rule_Level, key=lambda x: x['start'])
Rule_RoleName = sorted(Rule_RoleName, key=lambda x: x['start'])
nowtime = datetime.now()
def split_level(level:str):
try:
parts = level.split('-')
return (int(parts[0]), int(parts[1]))
except:
raise Exception(f"职级[{level}]格式错误")
return (0, 0)
def role_salary(role:str, time): def role_salary(role:str, time):
for rule in Rule_Role: for rule in Rule_Role:
@ -198,7 +133,30 @@ def role_limit(role:str):
logging.warning(f"职位[{role}]不存在职级上限规则") logging.warning(f"职位[{role}]不存在职级上限规则")
return -1 return -1
# 填充类辅助函数 def format_time(dt,info):
try:
return dt.strftime("%Y.%m")
except:
logging.warning(f"[{info}]时间格式错误:{dt}")
return dt
def to_int(x):
try:
return int(x)
except:
return 0
BaseData["工龄调增"] = BaseData["工龄调增"].apply(to_int)
BaseData["工龄调减"] = BaseData["工龄调减"].apply(to_int)
BaseData["学龄"] = BaseData["学龄"].apply(to_int)
def fallback(x):
for i in x:
if pd.notna(i) and i != '':
return i
return ''
max_promote = 0
max_history = 0
def fill_basic_info(ws, row):# 填充基本信息 def fill_basic_info(ws, row):# 填充基本信息
ws.cell(row=2, column=1, value=f"部门:{row['部门']} 职务:{row['职务']}") ws.cell(row=2, column=1, value=f"部门:{row['部门']} 职务:{row['职务']}")
@ -248,13 +206,11 @@ def fill_history_info(ws, History_pd):# 填充历史记录
ws.cell(row=H_START+index, column=7, value=hrow["变动原因"]) ws.cell(row=H_START+index, column=7, value=hrow["变动原因"])
# ws.cell(row=H_START+index, column=8, value=index) # Debug # ws.cell(row=H_START+index, column=8, value=index) # Debug
def main(): BaseData["Latest_Role"] = None
BaseData["Latest_Prom"] = None
load_people()
load_rule()
# 创建一个空的DataFrame来存储所有历史记录 # 创建一个空的DataFrame来存储所有历史记录
all_history = pd.DataFrame(columns=["身份证号码", "姓名", "时间", "职务", "职务工资", "级别档次", "级别工资", "工资合计", "变动原因", "晋升备注"]) all_history = pd.DataFrame(columns=["身份证号码", "姓名", "时间", "职务", "职务工资", "级别档次", "级别工资", "工资合计", "变动原因"])
for index, row in BaseData.iterrows(): for index, row in BaseData.iterrows():
try: try:
@ -268,7 +224,7 @@ def main():
# 查找晋升信息 # 查找晋升信息
promote = Promote[Promote["身份证号"] == row["身份证号码"]] promote = Promote[Promote["身份证号"] == row["身份证号码"]]
if not promote.empty: if not promote.empty:
promote = promote.sort_values(by=["工资执行时间", "任职时间"], ascending=[False, False]).reset_index(drop=True) promote = promote.sort_values(by="任职时间", ascending=False).reset_index(drop=True)
BaseData.at[index, "Latest_Role"] = promote.iloc[0]["新职务"] BaseData.at[index, "Latest_Role"] = promote.iloc[0]["新职务"]
BaseData.at[index, "Latest_Prom"] = promote.iloc[0]["任职时间"] BaseData.at[index, "Latest_Prom"] = promote.iloc[0]["任职时间"]
# 把原职务取出来 # 把原职务取出来
@ -279,33 +235,33 @@ def main():
BaseData.at[index, "职务2"] = row["初始职务"] BaseData.at[index, "职务2"] = row["初始职务"]
BaseData.at[index, "日期2"] = row["入职时间"] BaseData.at[index, "日期2"] = row["入职时间"]
promote = promote.sort_values(by=["工资执行时间", "任职时间"]).reset_index(drop=True) promote = promote.sort_values(by="任职时间").reset_index(drop=True)
fill_prompt_info(ws, promote)# 填充晋升信息 fill_prompt_info(ws, promote)# 填充晋升信息
# 根据规则匹配职级薪资 # 根据规则匹配职级薪资
History_pd = pd.DataFrame(columns=["时间", "职务", "职务工资", "级别档次", "级别工资", "工资合计", "变动原因", "晋升备注"]) History_pd = pd.DataFrame(columns=["时间", "职务", "职务工资", "级别档次", "级别工资", "工资合计", "变动原因"])
# 添加入职记录 # 添加入职记录
History_pd.loc[len(History_pd)] = [row["入职时间"], row["初始职务"], "", row["入职时的初始级别"], "", "", "套改/定级", ""] History_pd.loc[len(History_pd)] = [row["入职时间"], row["初始职务"], "", row["入职时的初始级别"], "", "", "套改/定级"]
for index, prow in promote.iterrows(): # 添加晋升记录 for index, prow in promote.iterrows(): # 添加晋升记录
History_pd.loc[len(History_pd)] = [prow["工资执行时间"]+relativedelta(hours=prow["任职时间"].month,minutes=prow["任职时间"].day), prow["新职务"], "", "", "", "", "晋升", f"{prow['新职务']} {prow['变动批注'] if pd.notna(prow['变动批注']) else ''}"] History_pd.loc[len(History_pd)] = [prow["工资执行时间"], prow["新职务"], "", "", "", "", "晋升"]
try: try:
calctime=row["晋档起始"] + relativedelta(minute=1) calctime=row["晋档起始"] + relativedelta(minute=1)
while True: # 添加晋档记录 while True: # 添加晋档记录
calctime += relativedelta(years=row["晋档间隔"]) calctime += relativedelta(years=row["晋档间隔"])
if calctime > NOWTIME: if calctime > nowtime:
break break
History_pd.loc[len(History_pd)] = [calctime, "", "", "", "", "", "两年晋档", ""] History_pd.loc[len(History_pd)] = [calctime, "", "", "", "", "", "两年晋档"]
calctime=row["晋级起始"] calctime=row["晋级起始"]
while True: # 添加晋级记录 while True: # 添加晋级记录
calctime += relativedelta(years=row["晋级间隔"]) calctime += relativedelta(years=row["晋级间隔"])
if calctime > NOWTIME: if calctime > nowtime:
break break
History_pd.loc[len(History_pd)] = [calctime, "", "", "", "", "", "五年晋级", ""] History_pd.loc[len(History_pd)] = [calctime, "", "", "", "", "", "五年晋级"]
except: except:
raise Exception(f"晋级、档起始或间隔时间格式错误:{row['级起始']}-{row['晋档起始']}-{row['晋级间隔']}-{row['晋档间隔']}") raise Exception(f"晋级、档起始时间格式错误:{row['档起始']}{row['晋级起始']}")
for rule in Rule_Level: # 工资调标 for rule in Rule_Level: # 工资调标
if row["入职时间"] < rule["start"]: if row["入职时间"] < rule["start"]:
History_pd.loc[len(History_pd)] = [rule["start"], "", "", "", "", "", "工资调标", ""] History_pd.loc[len(History_pd)] = [rule["start"], "", "", "", "", "", "工资调标"]
History_pd = History_pd.sort_values(by="时间").reset_index(drop=True) History_pd = History_pd.sort_values(by="时间").reset_index(drop=True)
if History_pd.at[0,"时间"] != row["入职时间"]: if History_pd.at[0,"时间"] != row["入职时间"]:
@ -323,9 +279,6 @@ def main():
if hrow["变动原因"] == "两年晋档": if hrow["变动原因"] == "两年晋档":
History_pd.at[index, "级别档次"] = f"{jb}-{dc+1}" History_pd.at[index, "级别档次"] = f"{jb}-{dc+1}"
elif hrow["变动原因"] == "五年晋级": elif hrow["变动原因"] == "五年晋级":
if jb-1 < 1 or jb-1 < role_limit(History_pd.iloc[index]["职务"]):
History_pd.at[index, "级别档次"] = f"{jb}-{dc+1}"
else:
History_pd.at[index, "级别档次"] = f"{jb-1}-{dc-1}" History_pd.at[index, "级别档次"] = f"{jb-1}-{dc-1}"
elif hrow["变动原因"] == "工资调标": elif hrow["变动原因"] == "工资调标":
History_pd.at[index, "级别档次"] = f"{jb}-{dc}" History_pd.at[index, "级别档次"] = f"{jb}-{dc}"
@ -386,8 +339,8 @@ def main():
ws.cell(row=6+index, column=4, value=format_time(row["出生年月"], "出生年月")) ws.cell(row=6+index, column=4, value=format_time(row["出生年月"], "出生年月"))
ws.cell(row=6+index, column=5, value=format_time(row["参加工作时间"], "参加工作时间")) ws.cell(row=6+index, column=5, value=format_time(row["参加工作时间"], "参加工作时间"))
ws.cell(row=6+index, column=6, value=fallback([row["现学历"],row["学历"]])) ws.cell(row=6+index, column=6, value=fallback([row["现学历"],row["学历"]]))
ws.cell(row=6+index, column=7, value=row['工龄']+row["学龄"]) ws.cell(row=6+index, column=7, value=nowtime.year-row["参加工作时间"].year+row["工龄调增"]-row["工龄调减"]+1+row["学龄"])
ws.cell(row=6+index, column=8, value=row['工龄']) ws.cell(row=6+index, column=8, value=nowtime.year-row["参加工作时间"].year+row["工龄调增"]-row["工龄调减"]+1)
ws.cell(row=6+index, column=9, value=row["学龄"]) ws.cell(row=6+index, column=9, value=row["学龄"])
ws.cell(row=6+index, column=10, value=row["工龄调减"]) ws.cell(row=6+index, column=10, value=row["工龄调减"])
ws.cell(row=6+index, column=11, value=row["Latest_Role"]) ws.cell(row=6+index, column=11, value=row["Latest_Role"])
@ -402,6 +355,3 @@ def main():
logging.warning(f"最多有[{max_promote}]条晋升信息,需要调整模板。记得同时调整薪资历史的起始行和个人评价结果。") logging.warning(f"最多有[{max_promote}]条晋升信息,需要调整模板。记得同时调整薪资历史的起始行和个人评价结果。")
if max_history > 0: if max_history > 0:
logging.warning(f"最多有[{max_history}]条薪资历史,需要调整模板。") logging.warning(f"最多有[{max_history}]条薪资历史,需要调整模板。")
if __name__ == "__main__":
main()