refactor: 重构数据读取逻辑以提升代码结构和可读性

- 将员工数据、晋升记录、职位规则和职级规则的读取逻辑封装为独立函数,增强代码的模块化
- 更新全局变量的定义,确保数据处理的一致性和清晰性
- 移除冗余代码,提升整体代码的可维护性和可读性
This commit is contained in:
Miu Li 2025-06-12 20:16:05 +08:00
parent bef29011c3
commit f77bf1d096

95
main.py
View File

@ -16,11 +16,26 @@ P_LIMIT = 6 # 最大晋升次数
P_START = 10 # 晋升记录开始行
H_START = 15 + P_LIMIT # 历史记录开始行
nowtime = datetime.now()
NOWTIME = datetime.now()
# 全局变量
## 通过函数读取
BaseData = pd.DataFrame()
Promote = pd.DataFrame()
Rule_Role = []
Rule_Level = []
Rule_RoleName = []
Level_Limit = pd.DataFrame()
Promote_Level = pd.DataFrame()
Promote_verify = pd.DataFrame()
## 统计量
max_promote = 0
max_history = 0
# 工具函数
# 自定义日期解析函数
def custom_date_parser(x):
try:
return datetime.strptime(x, '%Y-%m-%d')
@ -53,34 +68,32 @@ def split_level(level:str):
except:
raise Exception(f"职级[{level}]格式错误")
# 读取员工数据
# 读取信息
def read_base_data(): # 读取员工数据
global BaseData
BaseData = pd.read_excel("原数据.xlsx", sheet_name="入职信息")
for col in ["出生年月","任职年月","原职时间","参加工作时间","入职时间", "晋档起始", "晋级起始", "日期2"]:
BaseData[col] = BaseData[col].apply(custom_date_parser)
for col in ["晋档起始", "晋级起始"]:
BaseData[col] = BaseData[col].apply(lambda x: datetime(x.year, 1, 1) if isinstance(x, datetime) else x)
BaseData["Latest_Role"] = None
BaseData["Latest_Prom"] = None
BaseData["工龄调增"] = BaseData["工龄调增"].apply(to_int)
BaseData["工龄调减"] = BaseData["工龄调减"].apply(to_int)
BaseData["学龄"] = BaseData["学龄"].apply(to_int)
BaseData["工龄"] = BaseData.apply(lambda row: nowtime.year-row["参加工作时间"].year+row["工龄调增"]-row["工龄调减"]+1, axis=1)
# 读取晋升记录
Promote = pd.read_excel("原数据.xlsx", sheet_name="职务变动") #
BaseData["工龄"] = BaseData.apply(lambda row: NOWTIME.year-row["参加工作时间"].year+row["工龄调增"]-row["工龄调减"]+1, axis=1)
def read_promote(): # 读取晋升记录
global Promote
Promote = pd.read_excel("原数据.xlsx", sheet_name="职务变动")
for col in ["任职时间","工资执行时间"]:
Promote[col] = Promote[col].apply(custom_date_parser)
logging.info("人员信息加载完成")
# 读取规则
Rule_Role = []
def read_rule_role(): # 读取职位规则
global Rule_Role
col = 4
while True: # 职位规则
while True:
try:
rule = pd.read_excel("原数据.xlsx", sheet_name="职位规则",usecols=f"{get_column_letter(col)}:{get_column_letter(col+1)}", header=None)
Rule_Role.append({
@ -91,7 +104,10 @@ while True: # 职位规则
col += 2
except:
break
Rule_Level = []
Rule_Role = sorted(Rule_Role, key=lambda x: x['start'])
def read_rule_level(): # 读取职级规则
global Rule_Level
col = 1
while True: # 职级规则
try:
@ -104,7 +120,10 @@ while True: # 职级规则
col += 2
except:
break
Rule_RoleName = []
Rule_Level = sorted(Rule_Level, key=lambda x: x['start'])
def read_rule_role_name(): # 读取名称变化规则
global Rule_RoleName
col = 1
while True: # 名称变化
try:
@ -117,8 +136,10 @@ while True: # 名称变化
col += 2
except:
break
Rule_RoleName = sorted(Rule_RoleName, key=lambda x: x['start'])
# 读取职位对应的级别限制
def read_level_limit(): # 读取职位对应的级别限制
global Level_Limit, Promote_Level
Level_Limit_tmp = pd.read_excel("原数据.xlsx", sheet_name="职位规则", usecols="A:A", skiprows=2, names=["limit"])
Promote_Level_tmp = pd.read_excel("原数据.xlsx", sheet_name="职位规则", usecols="B:C", skiprows=2, names=["级别","档次"])
Level_Limit = {}
@ -128,14 +149,24 @@ for rule in Rule_Role:
Level_Limit[row["role"]] = Level_Limit_tmp.iloc[index]["limit"]
Promote_Level[row["role"]] = (Promote_Level_tmp.iloc[index]["级别"], Promote_Level_tmp.iloc[index]["档次"])
# 晋升校验
Promote_verify = Level_Limit_tmp = pd.read_excel("原数据.xlsx", sheet_name="晋升校验", usecols="A:B")
def read_promote_verify(): # 读取晋升校验
global Promote_verify
Promote_verify = pd.read_excel("原数据.xlsx", sheet_name="晋升校验", usecols="A:B")
def load_people():
read_base_data()
read_promote()
logging.info("人员信息加载完成")
def load_rule():
read_rule_role()
read_rule_level()
read_rule_role_name()
read_level_limit()
read_promote_verify()
logging.info("规则加载完成")
Rule_Role = sorted(Rule_Role, key=lambda x: x['start'])
Rule_Level = sorted(Rule_Level, key=lambda x: x['start'])
Rule_RoleName = sorted(Rule_RoleName, key=lambda x: x['start'])
# 获取配置类函数
def role_salary(role:str, time):
for rule in Rule_Role:
@ -167,8 +198,7 @@ def role_limit(role:str):
logging.warning(f"职位[{role}]不存在职级上限规则")
return -1
max_promote = 0
max_history = 0
# 填充类辅助函数
def fill_basic_info(ws, row):# 填充基本信息
ws.cell(row=2, column=1, value=f"部门:{row['部门']} 职务:{row['职务']}")
@ -218,8 +248,10 @@ def fill_history_info(ws, History_pd):# 填充历史记录
ws.cell(row=H_START+index, column=7, value=hrow["变动原因"])
# ws.cell(row=H_START+index, column=8, value=index) # Debug
BaseData["Latest_Role"] = None
BaseData["Latest_Prom"] = None
def main():
load_people()
load_rule()
# 创建一个空的DataFrame来存储所有历史记录
all_history = pd.DataFrame(columns=["身份证号码", "姓名", "时间", "职务", "职务工资", "级别档次", "级别工资", "工资合计", "变动原因", "晋升备注"])
@ -260,13 +292,13 @@ for index, row in BaseData.iterrows():
calctime=row["晋档起始"] + relativedelta(minute=1)
while True: # 添加晋档记录
calctime += relativedelta(years=row["晋档间隔"])
if calctime > nowtime:
if calctime > NOWTIME:
break
History_pd.loc[len(History_pd)] = [calctime, "", "", "", "", "", "两年晋档", ""]
calctime=row["晋级起始"]
while True: # 添加晋级记录
calctime += relativedelta(years=row["晋级间隔"])
if calctime > nowtime:
if calctime > NOWTIME:
break
History_pd.loc[len(History_pd)] = [calctime, "", "", "", "", "", "五年晋级", ""]
except:
@ -370,3 +402,6 @@ if max_promote > 0:
logging.warning(f"最多有[{max_promote}]条晋升信息,需要调整模板。记得同时调整薪资历史的起始行和个人评价结果。")
if max_history > 0:
logging.warning(f"最多有[{max_history}]条薪资历史,需要调整模板。")
if __name__ == "__main__":
main()